
 - 1 -

Methodology for developing
Use Cases for large systems

Arnon Rotem-Gal-Oz

Preface

It was back in 1986 when Ivan Jacobson first invented Use Cases [Jacobson 2003]. It

took several years for use cases to evolve until the definition, used today, was

refined: "A description of set of sequences of actions, including variants, that a

system performs that yield an observable result of value to an actor" [Booch 1999].

There are quite a lot of books, papers and other resources that explain what use cases

are and how to go about modeling a use case model – however, the simplistic

examples and techniques detailed in many of these resources either don't deal at all or

don’t scale-up to deal with the non-trivial, real world, challenges of building a use

case model for modern large and complex systems.

The purpose of this paper is to offer a methodology for creating and building a Use

Case Model that caters for the needs and challenges of large and complex projects.

The paper will explore some of the major challenges that are typical of large projects

and will demonstrate practical steps for mitigating these challenges. To clarify - this

paper is not about explaining why use cases should be used for enterprise

requirements analysis nor is this paper about the mechanics and process of writing the

single Use Case. The paper is about the Use Case Set and about the process to achieve

a robust set that can serve as a good foundation for designing and building large

software systems.

The paper begins with an overview of the naïve use case modeling process, followed

by the challenges posed by large projects. This is followed by an overview of the

suggested methodology, which is then detailed step by step.

It is important to show that the methodology elaborated in this paper is rooted in

practical experience, thus I'll try to illustrate the key issues through examples.

However, It is somewhat problematic to come up with a suitable example – On the

 - 2 -

one hand an example that is too simplistic will miss the main purpose of the article

(large, complex systems…) ,and on the other hand a complete real-life example will

be too long and will cause the methodology to be lost in the details. The solution to

this dilemma is to use examples that are small, local, snap-shots of the requirements

of a single large system. The example chosen is a command and control system for

police forces. The project described here is fictitious but it is closely related to a real

project with similar size and complexity. The background needed to understand the

big-picture of the example is described in Appendix A.

Introduction
The use case model describes the behavioral view of the system. The main artifacts of

the use case model include:

• Actor list – A list of all the actors found and their relationships –

maintaining an actors list is important especially when there are a lot of

actors and there are several teams working in parallel to help prevent the

teams from identifying duplicate actors within the model (more on that

later).

• Use Case Packages – represent the contextual hierarchy between the use

cases. This artifact contributes to the differentiation of the different use

case levels as well as enhancing readability by grouping of use cases by

subject. Use case packages can also be used to divide the work between

the different teams.

• Use case diagrams – The diagrams are the graphical/pictorial

representations of the use case model. Besides visualizing the interaction

between the actors and the use cases, their more important role is

describing the relations between the various use cases in the model.

• The use-cases text –Word documents containing the use cases. In most

cases the use cases are written according to a template set by the

projects/organization.

• Use case views – Several views that help understand the model from

different angles (of the different stakeholders).

It is important to remember that use cases do not capture the entire requirements of

the system – e.g. non behavioral aspects of the system such as performance, security;

 - 3 -

environment constraints (such as specific OS, Hardware etc.) are not captured and

should be elaborated separately. Some of the non-behavioral aspects can be captured

within use cases - if they manifest themselves in the context of the use case, e.g. a

performance requirement for response time can be captured when describing the

"Handle Emergency Call" use case of the Emergency Communication Center.

The naïve process for building a use case model is very straightforward [Armour

2001]

1. Find Actors

2. Find Use Cases

3. Describe the Use Cases

The problem with this approach is that such a simple process just doesn't cut it when it

comes to large and complex systems.

Most of the challenges to the naïve process posed by large/complex systems are

indeed related to size – either of the requirements gathering team or the model itself.

One of the major problems with a large use case set (which is common for a large

system) is that there is a good chance that the model is inflicted with duplicates (more

on that later) and more importantly inconsistencies between the different use cases –

starting from boundaries mismatches and ending in contradicting use cases.

Another of the challenges related to the use case set is the problem of use case

explosion, or simply put, too many use cases in the model [Lilly 2000]. The issue is,

actually, a little more subtle as there are multiple levels of use cases and the problem

can occur at each level separately. When a use case set has too many use cases they

usually don't describe user goals but rather trivial interactions or incidental actions of

the users.

Another problem related to the use case set is making sure the requirements detailed

in the model are "good" - as described in the "IEEE Recommended Practice for

Software Requirements Specifications", i.e., Correct; Unambiguous; Complete;

Consistent; Ranked for importance and/or stability; Verifiable; Modifiable and

Traceable [IEEE 1998]. The problem of eliciting good requirements is, of course, not

specific to large systems, but it is much more problematic when dealing with a lot of

requirements.

 - 4 -

Using large teams for the modeling effort can basically cause two major problems.

One is that too many people working together (on anything) is both inefficient and

leads to a lot of compromises (to satisfy the many different views) resulting in a

"design by committee" effect [Adolph 2003].

The other major problem caused by large teams, dubbed by Donald G. Firesmith as

the "Humpty Dumpty effect", is caused by dividing the work between many teams

thus risking multiple, redundant, partial variants of the same classes and objects

fragmented over many use cases. The result of that scattering of objects may be that "

all the kings designers and all the king's coders are unlikely to put the objects and

classes back together again without a massive expenditure of time and effort"

[Firesmith 1996].

The other type of challenges is challenges related to the process of building the model.

People (esp. developers) are drawn into writing the details early [Adolph 2003] - this

has several negative effects, such as wasting energy on detailing requirements that

will almost surly change when more will be known about the system (as the analysis

progresses). Also, this hinders the possibility of achieving a coherent use case set that

can be validated early by the stakeholders/customers.

Another process related problem (which is related to the "use case explosion" problem

mentioned earlier) is of knowing when to stop [Adolph 2003, Firesmith 1996] or

rather not knowing when to stop, which can lead to both, a lot of use cases and the use

case building effort never to finish [Lilly 2000].

The last major problem1 related to the process is trying to cover all the system

requirements in one single pass [Armour 2001, Adolph 2003] this can have dire

consequences such as large delays in the project schedule or even worse finding out a

lot of that extra time was wasted as requirements change (when the project's team has

better understanding of the system).

It is clear that the issues and challenges mentioned above cannot be solved by the

naïve process mentioned earlier. The use case model building process should be

1 There are many other potential use case related problems - both to writing the use

cases themselves and to use case modeling in general - but they are not unique
to large and complex system and thus, not in the scope of this paper

 - 5 -

extended in order to mitigate these challenges. The following section details such an

extension of the process to support building a model for large and complex systems.

The suggested process for building a use case model – can itself be summed in a

pseudo use case form:

Use Case: Build a Use Case Model

Level: Summary

Scope: The requirements engineer(s) build a use case model of the functional

requirement for the project at hand.

Primary Actor: Requirements Manager

Supporting Actors:

• Requirements Engineers

• Architect

• Customer

Stakeholders and concerns:

• Project Manager: Wants to understand the requirements and assess the

development effort.

• Architect: Wants to understand the breadth and scope of the problem,

and the customer's and end-users needs (in order to design a suitable

solution).

• End-Users: Wants to make sure all their needs are addressed

• Customer : Wants to make sure the project team understand the

requirements and that she'll get a viable product

• Development team: Wants to understand what they need to build.

Preconditions: None.

Success Guarantees: The project team has a good, viable description of the

functional requirements of the project. The customer and contractor both

understand and agree on the requirements.

Trigger: The Requirement Engineer decides to start collecting and eliciting the

customer requirements.

Main Success Scenario:

A. Initialization Steps

0. The Customer described the problems and needs

1. The Requirements Manager and Architect define the system boundary

 - 6 -

2. The Requirements Manager organizes the team (requirements engineers)

3. The Requirement Engineers build the Problem Domain Object Model

(PDOM)

B. The Process

4. The Requirements Engineers identify actors

5. The Requirements Engineers identify use cases

6. The Requirements Manager organizes the model

7. The Architect prioritizes the use cases

8. The Requirements Engineers describe the use cases

9. The Requirements Engineers refactor the model

C. Supporting Steps

10. The Requirements Engineers Verify & Validate the model

11. The Architect identifies future requirements

D. End Game

12. The Requirements Manger decides when to stop

Variations:

1. Steps 5 and 6 can be done in parallel (i.e. find some use cases, organize

them, then find some more etc.)

2. Steps 10 and 11 can (and should) be performed in parallel to steps 5-9

3. The process is iterative in nature, thus steps 4-11 (and 3, if needed) may be

repeated several times with increased detail in each iteration.

4. In addition to Variation 3 – In certain situations it may even be needed to

refine the system boundary/scope (step 1) after the first iteration of steps 4

and 5.

 - 7 -

Building a Use Case Model

Initialization Steps

Step 1: Define the system boundary
"A journey of a thousand miles begins with a single step" - Though it may be

tempting to jump in and start modeling the use cases right off, it is very important to

make the appropriate preparations and decisions before you begin.

The first thing to do is establish an early vision of the system (which will be updated

later as we gain more understanding of the system). This is an important step since the

vision captures the essence of the requirements (the fundamental "why's and what's"

of the project) – thus, having a clear vision increases the chance to develop a system

that will meet the stakeholders real needs [Probasco 2000].

The vision (& scope) statement should address the following issues [Armour 2001,

Probasco 2000]:

• What problem(s) are we trying to solve?

• Who are the stakeholders? Who are the users? What are their respective

needs?

• What are the main goals of the client organization? What are the main

goals of the department/unit the solution is built for?

• What are the main goals of the system?

• How would this solution affect our (the contractor's) business?

• What are the boundaries of the solution? What are the major functional

and non-functional requirements?

• What are the future directions of the product?

 - 8 -

Example 1: Police Force Command & Control – Vision document

The vision document, as mentioned above, provides an overview of the problem; Who

are the stakeholders that have vested interest in the project; the highlights of the

solution; etc. The text below shows few examples for topics that are part of the vision

statement for the Police Force Command & Control project.

Problem Statement (Excerpts)
The problem of The emergency call center procedures are manual and

take long time to accomplish. The time it takes from
accepting a call to a police car arriving at a crime-
scene can get as high as 30-40 minutes

affects Citizens

the impact of which is The police, sometimes, arrive too late, which is both,
well, too late and makes it is harder to apprehend the
offenders.

a successful solution would Decrease the response time for on-going calls/cases to
15 minutes or less.

The problem of Police car location is based on the policemen calling

in their location by radio and by an operator manually
marking their whereabouts on a printed map – this
makes the locations both outdated and inaccurate.

affects Citizens, Policemen

the impact of which is Cars that are close to the whereabouts of the crime –
are not used – which increases the time it takes to
arrive at a crime scene.

a successful solution would Allow better utilization of available beat cars for on-
going calls response by a factor of 4 (or better)

The problem of Police cars are not serviced on a regular basis, the

registration of police cars and their management is a
manual operation.

affects Logistics Commander, Policemen

the impact of which is Cars break-down in mid-operation, fuel costs are
high.

a successful solution would Decrease the number of unexpected beat car break-
down during operation by a factor of 2

 - 9 -

Stakeholder Summary (Excerpts)
Name Represents Role

Citizens While not a part of the
system, citizens are the
underlying financers of the
system (via tax money).
Even more importantly,
citizens will benefit from a
more efficient police
operation by getting their
emergency calls treated
more quickly. Also they
will benefit from lower
crime rates.

The citizens do not play a
role in the development
process.

Customer
Representatives.

Customer Ensure the cost and scope of
the project will stay on-track

User Representatives End-users Ensure that the system
interaction design will
benefit the end-users.

User Summary (Excerpts)
Name Description

Watch Commander The watch commander is the commander on-duty in every
watch (there are 3 watches a day). She is responsible for
the overall operation of the district.

Beat Officer Any policeman that is part of a beat team – these police
officers patrol in their cars in a specific beat during a
specific watch.

Logistics manager The logistics manager is responsible for all the equipment
including police cars and the various detectors (camera,
radars etc.)

Summary of Capabilities (Excerpts)

Customer Benefit Supporting Features

New Emergency center operators can
quickly get up to speed.

Wizards ,easy to navigate maps and
concise forms assists operators in
quickly identifying caller, available
police cars for dispatch etc.

Watch commander job is easier and
improved because data is accurate, up-to-
date and nothing falls through the cracks.

Tools supporting situation awareness
updates automatically; alerts on problems
are automatically generated; statistical
reports, as well as, detailed reports are
generated on request.

District chiefs and the police chief can
identify problem areas and gauge staff
workload.

Trend and distribution reports allow high
level review of problem status.
Incident analysis (including spatial
analysis) tools support identification of
problem patterns.

 - 10 -

Logistics Manager job is more efficient
and equipment maintenance is better.

Usage is tracked automatically as well as
service history for all equipment types;
Reports are generated by the system for
equipment that should be services on a
time/usage basis.

Beat cops job is easier and more efficient. Integrated navigation system improves
response time for calls; on-line access to
license and registration databases
improves tracking and identifying
offenders.

Many of the answers to the questions in the vision statement serve as helpful, relevant

information for the use case modeling effort. For example the main users will help us

identify actors of the system; future directions will help us define change cases etc.

The most important answer2 however, is the definition of the system boundary. The

system boundary is important because the core of the use case approach is to define

the system from the point of view the entities which are out-side of it. If what is inside

the system and what isn't is not known, the modeling effort cannot really begin.

Another point is that a document with a shared clear vision [Adolph 2003] helps

coordinate and focus the requirements teams (and later the designers and coders) on

the same goal.

While, this may not be directly related to the use case effort – it should be noted that

in large systems the vision statement is likely to be refined through the early stages of

the project ("inception phase" in RUP terms). These refinements can include the

functional requirements (along with measurable acceptance criteria), financial

constraints, trade-offs etc.

Step 2: Organize the team.
The second step to carry out before starting the modeling effort itself is an

organizational one. – The teams (sizes and structure) that will be involved in the

modeling effort should be determined.

The first aspect regarding teams is the size of the writing teams and the number of

total writing teams – in both cases it is desirable to keep sizes as small as possible

[Adolph 2003]. Having a small team (2-3 people) write any individual use case will

increase the efficiency of the writing process as well as help mitigate the risk of

feature bloat. Although it is tempting to throw a lot of people at a large problem

(There are a lot of requirements to cover in large projects) -having a few teams as

2 in the context of the use case model

 - 11 -

possible will help maintain the model's consistency (maintain conceptual integrity)

and, yes, even get to the target faster - as the following anecdote told by Fred Brooks

demonstrates3:

"It is very humbling experience to make a multimillion-dollar mistake, but it is also

very memorable…The architecture manager had 10 good men. He asserted that they

could write the specifications and do it right. It would take ten months, three more

than the schedule allowed. The control program manager had 150 men. He asserted

that they could prepare the specification, with the architecture team coordinating; it

would be well-done and practical, and he could do it on schedule. Furthermore, if the

architecture team did it, his 150 men would sit twiddling their thumbs for ten months.

To this the architecture manager responded that if I gave the control program team the

responsibility, the result would not in fact be on time, but would also be three month

late, and of much lower quality. I did, and it was. He was right on both counts.

Moreover, the lack of conceptual integrity made the system far more costly to build

and change, and I would estimate that it added a year to debugging time." [Brooks

1995]

The second aspect is the composition of the teams – while the teams should be small

they shouldn't be homogenous. The teams should be staffed with people having

different specialties (including domain experts) [Adolph 2003] - it is especially

important to have customer involvement in the process, including if possible end-

users. Balanced teams will help keep the use cases at a level understandable by all the

stakeholders (including the development teams).

When developing large projects, the number of concerned parties (external

stockholders, domain experts, annalists, developers etc.) is usually large as well; this

leads to a delicate issue regarding the size of the teams versus balanced representation

by using heterogenic teams. In order to solve this issue it is suggested to use two tier

reviews[Adolph 2003], that is, first letting the (small) team agree on the use-case, then

holding one or more reviews to agree on the use-case on a broader forum and at the

end have a single large review where the use case will be presented (along with the

other use cases) to all the concerned audience.

Another team related issue in large projects is preventing overlaps and inconsistencies

between the works of the various teams. In order to balance this effect a single person

3 The storey in mythical man-month is not about a use cases effort but the same principal holds.

 - 12 -

should be responsible for coordinating the whole process (a "requirements manager").

This person's responsibility would include dividing the work between the teams and

also serve as a first tier reviewer to maintain the consistency of the overall use case

model as well as minimizing the chances for overlaps4.

The vision statement, described earlier, will help the team focus on the system goals

rather than on the (lesser) goals of the parties involved in the teams.

Step 3: Build a Problem Domain Object Model (PDOM)
Another important artifact that helps in the coordination of multiple teams is the

PDOM ,also knows as Domain modeling, which helps in defining the system

boundry and, more importantly (since the boundary is also defined in the vision

document) set a common vocabulary [Armour 2001, Rosenberg 2001] for the

different teams to use amongst themselves and while talking with end-users or any

other customer representatives.

While the Use Case model is part of the dynamic view of the system, the PDOM is

part of the static view. The PDOM is, essentially, a class model of the real-world

things and concepts related to the problem the system is designed to solve and that the

system must know about [Jacobson 1992].

4 This, and additional issues related to the quality of the model will be discussed later as part of the
discussion on verification and validation

 - 13 -

Example 2: excerpt from Police Force Command & Control PDOM

The PDOM is usually a set of UML object diagrams depicting the relations between the

various objects in the problem domain, followed by an explanation of the terms/objects

identifies in each diagram. The example below shows a small part of the police Force

Command & Control PDOM. The diagram does not contain all the relations but it

sufficient for understanding the PDOM's structure (The data in this example is based on

[Chicago 2003, O'Connor 2003]).

Police Car

Watch

Policeman

Work in

Beat

Beat Car

Is aAllocated to

Beat Team

Are Allocated to

Drive

Police HQ

Watch
Commander

Is a

Commands

Emergency
CenterDistrict

Commands

Commands Has an

Rapid Response
Car

Is a

Sector

Is made of

Is made of

Allocated to

• Police HQ – The headquarters responsible for all the districts in a

municipality.

• District – A geographical division of a municipality. A municipality can have

up to 25-35 districts depending on the size of the city

• Sector – One of three geographic divisions within a police district, comprising

three to five beats

• Beat - A geographic area assigned to specific officers for patrol

• Watch - A police shift. The police workday is divided into three watches. The

 - 14 -

first watch begins at 11 pm or midnight; the second, at 7 or 8 am; and the

third, at 3 or 4 pm.

• Beat Team - The eight or nine officers from all three watches assigned to the

same beat, and the sergeant who serves as team leader

• Beat Car – A police car assigned to a specific beat.

• Rapid Response Car - A squad car assigned to patrol a sector within a district

and respond to in-progress (emergency) calls

• Watch Commander – A lieutenant or captain who directs all police activities

within a district during a specific watch. Examples of the watch commander's

duties include deploying patrol officers within the district, approving arrests,

and checking the status of the lockup

• Emergency Communication Center – A 911-like call center for processing

emergency calls.

The PDOM is not part of the use case model, the reason it is mentioned in this paper

is that it serves as a balancing factor for the use case model [Jacobson 1992]. First and

foremost, it helps mitigate the risk of ending up with a functional (structural) model

instead of an object model [Firesmith 1996]. This can be achieved by writing the use

cases in the context of the object model [Rosenberg 2001] i.e. also take into account

the objects in the problem domain and not look at the use cases from a pure external

actors viewpoint.

The PDOM serving as a vocabulary of system concepts and objects, already

mentioned for helping teams communication, also helps to achieve greater

consistency between the use cases themselves [Armour 2001].

The PDOM can be developed iteratively, as the requirement gathering effort

progresses [Armour 2001]. Building the PDOM iteratively in conjunction with

writing the use cases can be used to help set the detail level of the use cases.

It is important to remember that the PDOM is not the system's class model. The

PDOM is just one of the 3 class model that are, usually, built in an orderly

development cycle. The additional two are the analysis class model (which uses the

 - 15 -

PDOM and the use case model as a source) and the third is the design class model (i.e.

the actual classes used by the application).

The PDOM serves several other aspects of the development process (that are not in

the scope of this paper) for example it serves as a source for candidate classes for the

design, to help define the system interfaces, etc.

The Process

Step 4: Find actors
Actor is a role that a user or external system plays with respect to the system under

design. Usually finding actors is not a goal in itself, but rather a good starting point

from which to identify use cases. There are some situations where it may be

beneficial to track actors, for example: if the system will need to be configured

differently for various kinds of users. The use case performed by each actor, in this

case, makes the usage profile within the system [Fowler 2000].

Finding actors is not a specific task for large systems - it is a recommended task for

any use case modeling effort. In the context of large systems, it is important to

remember that when starting out, the goal is to identify the major actors of the system

and there is no need to make an exhaustive list of all the actors [Armour 2001].

Additional actors will be reviled as the level of detail of the analysis increases.

The main source for the list of actors is interviews and brainstorming with end-users

and customer. Other resources include documents, such as [Armour 2001]:

organization charts, written specification (if there was an RFP), manuals of current

processes and systems etc.

An important issue is the distinction of roles and job titles. It is very convenient at the

beginning of the use case modeling effort to identify primary actors as the job titles

used in the organization. The only problem with that is this is usually not true – A

single person may play several roles when interacting with the application, for

example any person (operator, Watch supervisor etc.) in the Emergency

Communication Center may pick up the phone and register an incident (not just

operators). The process then, is to look at the different job titles and identify the roles

they can play. To solve this issue it is best to maintain a job-titles/roles matrix, this

way the business context of the roles is not lost and the real roles are used in the use

 - 16 -

cases [Cockburn 2001]. This relation can also be shown in Actor diagrams using the

generalization relation

Example 3: Actor's generalization

The diagram below shows a small fraction of the Force Command & Control

identified actors along with (some of) their relations.

Emergency
Center Supervisor

User

Watch
Commander

Emergency
Center Operator

HQ Watch
Commander

Cop

 - 17 -

This example means that when a reader looks at a use case like the following:

User
(from Actors)

Log in

She can understand that, any actor that derives from user (Watch commanders,

Emergency Center operators and their supervisors in this example) can log in the

system. Additionally, (from the first diagram) it can be understood, that while all the

system users are cops not all the cops can log into the system (since a cop is not an

actor that logs in).

Another interesting issue regarding actors is the use of time or clock as an actor.

Sometimes use cases appear to be triggered automatically based on a clock and it may

seem appropriate to use the time or clock as the primary actor for the use case. The

problem with this is that the time doesn’t really have a vested interest in the system –

there is always a real actor in the system that has interest in the use case and choosing

to use the time as a primary actor hides her. The (recommended) alternative (to using

the time as a primary actor) is to put the real actor as a primary actor and use the time

as a secondary actor [Crain 2002]. This solution is better since both the fact that there

is a real actor which is interested in the use case is preserved as well as the fact that

time is a factor in the use case.

 - 18 -

Example 4: Time as a secondary actor.

Looking at the time as an actor in the police Force Command & Control system -

several use cases can be identified, for example: Refresh Situation Awareness Picture.

This is a task that is done automatically every X seconds (as well as upon event, e.g.

whenever there is a new emergency incident) and refreshed the location of police cars

on a map (among other things).

Time
(from Actors)

Refresh Situation Awareness
Picture

Studying this use case more closely reveals that the real actor is the watch commander

in charge of the district and not the time. The use case is then depicted as follows:

Watch
Commander
(from Actors)

Refresh Situation Awareness
Picture

Time
(from Actors)

Analyzing this further, the real actor goal can be derived – which is not to refresh the

situation awareness picture – but rather to get an updated awareness picture – so the

final use case is:

Watch
Commander
(from Actors)

Get updated Situation
Awareness Picture

Time
(from Actors)

 - 19 -

Step 5: Find use cases
Finding use cases is, naturally, one of the most important activities in use case

modeling. In the initial iteration, the idea is not to find all of the system use cases, but

rather to find enough meaningful use cases that will give a good overview of the

system. This overview can then be used to identify risk factors, formalize an initial

candidate architecture etc. It is important to remember, especially in the initial phases

that actually we are identifying use case candidates – not all of which will eventually

be developed as use cases.

People, and even more so, developers are drawn into writing the details early [Adolph

2003]. This is especially true when people are overwhelmed by a large system and/or

not sure how to proceed. This should not be encouraged, as it can (and usually will)

lead to losing focus and losing energy as people get bogged down in the details. Also,

too much detail early on, when the complete picture is not fully understood, will result

in requirements that are volatile and likely to change later on.

Therefore it is best to follow, what Adolph et al call BreadthBeforeDepth pattern

[Adolph 2003] and conserve energy for later stages.

It is very beneficial, especially in large projects, to develop the use cases iteratively.

Developing the use-cases in one pass will, actually, delay the project (incur "water-

fall development"), not to mention that the requirements are likely to change as more

information is discovered and understood about the system. [Adolph 2003].

The same discovery techniques and guidelines apply to any of the iterations - where

each iteration increases the depth, precision and accuracy of the use case set.

There are basically four ways for discovering use cases [Ham 1998]:

• Scenario driven

• Actor/Responsibility

• Unstructured aggregation

• Mission decomposition

Scenario driven
Scenario driven use case discovery is the traditional OO approach for use case

elicitation. The approach is to examine the list of primary actors and look for

questions such as [Armour 2001]:

• What measurable value is needed by the actor?

• What business event might this actor initiate (based on her role)?

 - 20 -

• What services does the actor need from the system?

• What services does the actor provide?

• What information does the actor need from the system?

• What are the activities that are recurring and triggered by time?

Example 5: Finding Use cases

Each question type can help discover different use case types. The list below shows

few example for use cases discovery by utilizing the above mentioned questions.

• What measurable value is needed by the actor?

o Plan Special Op.

o Monitor Special Op.

o Analyze Crime Patterns.

• What business event might this actor initiate (based on her role)?

o Handle Emergency Call

o Call Car for Service

• What services does the actor need from the system?

o Find Navigation Route

o Get Unit Status

o Map Incidents

• What services does the actor provide?

o Dispatch Units

o Issue Tickets

• What information does the actor need from the system?

o Get Car Registration History

o List Duties

• What are the activities that are recurring and triggered by time?

o Get Updated Situation Awareness Map

o Generate Emergency Center Statistics Report

o Generate Crime Trends Report.

 - 21 -

It is important that each of the use cases will encapsulate a meaningful value for the

users (actors). Use cases (esp. at the higher levels) are about goals and not about user

tasks – the difference is subtle but important- A goal is an end condition whereas a

task is an intermediate process performed to achieve the goal; for example, at the

initial stage, a use-case like Handle Emergency Call is a valid use case, while a use-

case like Fill-in Incident Form is not.

Actor/Responsibility
A variation on the scenario driven elicitation is the Actor/Responsibility approach -

Taking each of the actors, finding their roles, the responsibilities they have for

accomplishing tasks and the collaborations the actors have with other actors (to

accomplish the tasks). The use cases are discovered by identifying the productive task

results [Ham 1998].

Unstructured aggregation
Unstructured aggregation is based on examining RFPs or RFP-like documents

(traditionally consisting of "shall" statements) - any active verb requirement can be

considered as a candidate use case. One benefit of this approach is that it helps

incorporate non-functional requirements into specific use cases.

Mission decomposition
Mission decomposition is somewhat similar to traditional decomposition- it begins

with a mission goal, which is decomposed by asking what need to be done to reach

that goal (product, services, etc.) and this decomposition continues until a leaf can be

considered as the output specification for a use case. The use case is elaborated by

identifying the actors, events, business rules etc. that apply to that mission component

[Ham 1998]. A benefit of this approach is focus on the main functionality (mission) of

the system and not on "nice-to-have" functionality.

Going through the different discovery techniques will yield a handful of use-case

candidates. One of the first things to do is to name the use-cases. The use case name

should reflect the interaction with the system as precisely as possible – as it is viewed

from the perspective of the actor. On the formal side- the common practice is to use

an active verb + [qualified] object [Gottesdiener 2003] for the name e.g. "Navigate to

 - 22 -

crime-scene", "Plan Special Op" etc.). It is better to use precise verbs like "monitor",

"notify", "approve" instead of vague names like "do" or "process".

Each new use case should have its actors listed (at least the primary one) and should

contain a short description summarizing the business goal and/or the purpose of the

use-case [Armour 2001].

It is also beneficial to determine the scope of each use case so that the boundary

between the different use cases can be determined. Specifying the scope can be

achieved by elaborating it in the text of the general description, a more formal way

(which will also benefit the later stages) is to use specific fields for this information

namely the preconditions, success guarantee and trigger. These three fields are used to

show what should have happened before the use case, what happened in the use case

and how the use case is started. Specifically:

• Preconditions describe what must happen before the use case begin – i.e.

the state and/or status that the system will have before letting the use-case

start [Cockburn 2001], usually the system will actively ensure these

conditions (in other words – another use case would run and set the

conditions up), though sometimes the desired state can be guaranteed via

design decisions.

• Success Guarantee describes the state of the system after a successful run

of the use case. This should include what interests of the stakeholders

(including, of course, the actors) are satisfied after a successful conclusion

of the use case [Cockburn 2001].

• Trigger describes the event that gets the use case started [Cockburn 2001].

It is usually performed by the primary actor.

Lastly, the use case should be given a unique id - for model management purposes.

 - 23 -

Example 6: Use case diagram

The Top-level use case model for the Force Command & Control system has twenty

six use cases grouped into six categories (more grouping and ordering the model

later). The following example shows the top-level use cases for two of the groups.

HQ Management

The following 5 use cases are the core use cases identified for HQ management

Run Watch
(from District On Going Operations)

Plan Special Op.
(from Special Ops)

Run Special Op.
(from Special Ops)

Watch
Commander
(from Actors)

Supervize an on-going
incident

(from Incidents Management)

<<extend>>

HQ Watch
Commander
(from Actors)

Run Watch (HQ)
(from HQ On Going Operations)

<<extend>>

The first use case was hatched by examining the primary goal of the Watch

commander

Use Case: Run Watch

ID: UC1

Scope: The Watch commander, having already logged into the system, initialize

the watch by studying the summary prepared by the former watch commander

(i.e. check out the open incidents; try to formalize situational awareness as to

her forces etc.).

Next the watch commander supervise the on-going tasks of the watch.

Towards the end of the watch, the watch commander, will summarize the open

incidents and significant events for the next shift.

 - 24 -

Primary Actor: Watch Commander

Preconditions: Watch Commander Logged into the system

Success Guarantees:

• Watch status report had been prepared, saved and printed

• Watch statistics are saved in the system.

Trigger: The Watch Commander chooses to "Init. The Watch".

The other use cases where hatched by examining the commander's secondary goals,

for example:

Use Case: Run Special Op.

ID: UC4

Scope: The Watch Commander chooses a Special operation to manage.

The task team chosen for the operation is briefed

The watch commander then monitors the operation as it unfolds (sending out

orders as needed)

The task team is debriefed for the results and a final report is made.

Primary Actor: Watch Commander

Preconditions: A Special Op. Plan is saved in the system.

Success Guarantees:

• The Special Op. recordings (Forces movement, Voice recordings etc.)

are saved in the system.

• The operation's statistics are saved in the system.

• Operation Final Report is saved and printed.

Trigger: The Watch Commander chooses a Special Op.

Problem Oriented Policing (POP)

The following use cases are the core use cases for the POP sub-system. The use cases

allow the actors to follow the POP methodology using the SARA process [Leigh

1996]: Scan, Analyze, Response and Assess.

 - 25 -

Formalize Response
(from POP)

Beat Officer
(from Actors)

Scan Problem
(from POP)

Assess Solution
(from POP)

Intelligence
System

(from Systems)

Analyze Problem
(from POP)

Here is one example of the use case description from the POP group:

Use Case: Analyze Problem

ID: UC10

Scope: The officer searches for incidents related to the problem and analyze

their characteristics (trying to find common patterns etc.) The system provides

tools and data (using spatial analysis tools, data imported from intelligence

system, data mining tools on the incidents statistics and details) on the

following areas (in accordance with the Problem Analysis Triangle (PAT)

methodology [Leigh 1996]):

• Features of the incidents location

• Features of the caller/victim

• Features of the offender / problem source.

This is an iterative process that stops when the officer believes she has a good

understanding of the problem and it causes.

Primary Actor: Beat Officer

Preconditions:

• A problem has been identified and entered into the system.

Success Guarantees:

• The analysis data is saved in the system

 - 26 -

• The analysis path is saved in the system (major decisions)

• The analysis conclusions are saved in the system.

Trigger: The Beat Officer selects a problem to analyze.

An interesting issue regarding use case discovery is that of misuse cases [Alexander

2002] – simply put, a misuse case is a use case from the point of view of an actor that

is hostile to the system and its (the use case) goal is a threat to the system (rather than

a system function). Misuse cases are beneficial in eliciting non-functional

requirements relating to security, safety, availability etc.

The idea is that once a misuse case has been identified (and later elaborated), analysis

can be made to discover the real system use-cases that are needed to mitigate and

handle the misuse case risks. Trade-off analysis should be carried out to determine if

mitigating misuse cases risks is worth-while (from the cost and effort perspectives).

 - 27 -

Example 7: Misuse Cases

The following example shows a misuse case and the analysis that follows (i.e. the new
use cases added to the system in-order to take care of the problems raised by the
misuse case)

User
(from Actors)

Log in

Tap Communications

Hacker
(from Mis-Actors)

Obtain Password
<<include>>

<<include>>

The first diagram shows a hacker that manages to obtain password and log into the

system by tapping the communications.

User
(from Actors)

Log in

Tap Communications

Hacker
(from Mis-Actors)

Obtain Password

<<include>>

Enforce Password Regime

Sys Admin
(from Actors)

Monitor System

<<detect>>

<<detect>>

<<mitigate>>

<<include>>

The second diagram shows two new use cases that are added in order to mitigate this

threat.

• Monitor system – The system administrator will need to have a monitoring

mechanism that will allow her to detect and trace any tapping or hacking

activities.

 - 28 -

• Enforce Password Regime – The use case will help make sure those passwords

are both non-trivial and changed periodically. Which, in turn, help make the

system less prone to break-ins. This use case is initiated by the system

administrator but it also affects the log-in use case for the users.

Note that the Tap Communications misuse case is a source for several other misuse

cases for the hacker such as "Monitor police moves" or "DOS/DDOS attack" etc.

Step 6: Organize the model.
Organizing the model may seem a trivial task – it is, however, an important step, that

contributes a lot to the manageability of the model. Readers (and writers) need an easy

way to navigate the model and more importantly to understand it. Organizing the

model can help determine the requirements applicable to the different aspects of the

development and help identify inconsistencies or overlaps [Gabb 2001]

The simplest form of organizing the model is by level of detail or what is called

"everUnfoldingStory" [Adolph 2003]. The idea is that the use case set is a hierarchical

story that can be unfolded for more detail or folded up for higher level view (and

more contexts). This organization principle means that each diagram will only show 1

or 2 levels of use-cases, where the lower level use cases are related to the upper level

use case by an include or trace relation. Navigation is as easy as asking "why?", or

"what for?" to navigate up and "how" to navigate down.

 - 29 -

Example 8: Navigating use case levels

The following example shows the relation between two levels of use cases.

Service Cars
(from Service/Maintenance management)

Fix Car After Accident
(from Service/Maintenance management)

Maintain Police Cars
(from Service/Maintenance management)

Track Police Cars Usage
(from Service/Maintenance management)

<<trace>>

<<trace>>

<<trace>>

The Maintain Police Cars use case is the higher-level (parent) use case for Service

Cars, Track Police Cars Usage and Fix Car after Accident use cases.

Navigating the model is easy, using the two questions discussed earlier – "Why" and

"How", e.g. :

• Why do we track the cars' usage? – In order to maintain the cars

• How do we maintain the cars? – We service them every 10000 km; We fix

them after accidents etc.

Additional ways to organize the model are based on categorizing the use cases is by

category sets (related group of categories) [Gabb 2001]. Commonly used category

sets include importance or priority (more on that in the next section), status (draft,

approved, validated etc.), scope (global, local, specific component), stakeholder etc.

One important category set is subject – the categories used for this category set are

from the problem domain. When the model has a lot of use cases it is also possible to

build the subject category as a hierarchy (again to allow easier navigation).

 - 30 -

Example 9: Organizing the use case model

The following is an example of the category hierarchy for the Police Force Command &

Control system.

The hierarchy can be traversed level by level:

Top-Level packages

Unit Support

System
Administration

Personnel
Management

HQ
Management

Equipment
Managment

Emergency
Communicaton Center

The top level packages cover the 6 major subject that the system has to deal with

• HQ Management – HQ management is the main motivation for building the

system. This package include the day-to-day command and control at the district

and HQ levels (see below)

• Emergency Communication center – Managing the "911 call center" - includes

accepting calls, dispatching units and also the management of the call center

personnel

• Unit Support – This package includes the use cases to support the men in the

field – navigation, ticketing, connection to the Emergency Comm. Center etc.

• Equipment Management – This is the package that holds the use cases the deal

with the logistics side of the operation, taking care of the cars, sensors etc.,

dispatching technicians to fix faulty equipment, running the spare-parts

warehouse etc.

 - 31 -

• Personnel Management – This package holds supporting use cases for

management of the people of the police force (including for example, allocation

to watches etc.)

• System Administration- Includes the use cases for supporting the on-going

operation of the system itself (users, maintenance, security etc.).

Level 2 (for HQ Management)

Special Ops

 District On Going
Operations

Incidents
Management

HQ On Going
Operations

POP

The second level use cases (for HQ management packages) is further divided to

• Incidents Management – dealing with incidents that are big enough to bubble to

the district level.

• Special Ops – Planning and execution of special operations (planned in advance)

• District On Going Operations – use cases that deal with the day-to-day watch

management.

• HQ On Going Operations – same as the above – but on the headquarters level.

• POP – Problem Oriented Policing – use cases that deal with the proactive

analysis and response to crimes

In addition to level by level traverse, CASE tools (Rational Rose in this case) also allow

 - 32 -

browsing the hierarchy as the tree it is.

When the use case model is large (which is common for a large project), it is

beneficial to create views of the use case model from the point of view of the different

stakeholders. One such view is the architectural use case view, defined in the RUP

[Kruchten 2000], which captures the use cases that are meaningful for determining the

architecture. Other options for views include the use case identified per sub-system,

 - 33 -

per development team, etc. In this respect, it is beneficial to use a requirement

management tool that allows filtering and slicing the model to the different views

(based on the different categories used).

Step 7: Prioritize use cases
The use cases, being a representation of the requirements, drive the development

effort. Modern software projects are built using an iterative process – this is done both

to have a better control on the project and its progress and to mitigate risks early

[Bittner 2003]. As mentioned earlier, handling all the use cases in a single pass is both

counter-productive (overwhelming) and wasteful (requirements change). Prioritizing

the use-cases, allows the division of the modeling effort between the different

iterations in a way the will contribute, or more precisely, drive the whole development

effort.

Note that there is a subtle but important difference between smaller projects and larger

ones – whereas in small projects use case prioritization is done to determine what

parts of the project will be developed in each iteration, in larger projects the

prioritization also determines which use cases will be analyzed in each iteration.

Risk is the key factor for use case prioritization. Three classes of risks are relevant for

use-case prioritization: business risks, architectural/technical risks and logistical risks

[Bittner 2003].

• Business risks should be mitigated in the initial phase - the main concerns

are: Are we building the right product? Is it feasible? What's its cost? Etc.

The list of critical (concept level) use cases should be formalized from the

use cases identified at this level.

• Architectural/Technical risks are the next level of concern – now the use

cases that are significant for the architecture should be found.

Additionally issues within the use case that are technically challenging

should also be dealt with and analyzed.

• Logistical risks are the 3rd level of concern – now use cases should be

described in a manner that will not delay the progress of the deliverables

needed (in each iteration).

 - 34 -

Example 10: Use cases by risk level

Usually different levels of use cases are identified at each risk level.

Business Risks

Top-level use cases are usually dealt with at this level e.g.

Run Watch, Formalize Problem, Respond to Incident, Handle Emergency Call

Handle request for Immediate Assistance.

Risk assessment at this stage reveals, for example, that the "personnel" group of use

cases (with use cases like Recruit Person and Retire Officer) is the least important

aspect of the system (per the goals set), and it can either be dropped or postponed to

the last stages.

Architectural / Technical Risks

The use cases at this risk level are the ones that should be analyzed first to help propel

the development effort.

In the Force Command & Control system use cases that deal with technical and

architectural risk can include (few examples):

Get Updated Situation Awareness Picture – for performance requirements on the map

module and communications (e.g. how often will the different vehicles report their

whereabouts or how much data should the map display at any given time).

Dispatch Unit – for performance and security requirement on the communication

system

Scan Problem – for the types of data that has to be captured in the other system use

cases to enable this use case.

Logistical Risks

Once the iteration and increments plan has been set use cases are prioritized in a way

that will support it – if the first increment includes the emergency communication

system then the Handle Emergency Call and Handle request for Immediate Assistance

will be decomposed first. Note that use cases like Respond to Incident should also be

decomposed, at least to some extent (e.g. to the main success scenario level) as they

encapsulate important interfaces with the Emergency Communication Center.

 - 35 -

The obvious prioritization technique is to handle the use cases by level, first complete

the summary level use cases, and then progress to the user goals level etc. The

problem is that this approach is too simplistic - While it is true that describing the first

couple of levels (at least to some extent) can give a good overview of the problem

(help mitigate the business risks), but for the next risk level (mitigate

architectural/technical risks) - there are many lower level use cases that should be

analyzed – which are significant to the architecture or bear technical risks that should

be mitigated early and these use cases, more often than not, are scattered at different

levels which makes a level by level approach is wasteful (of time).

Use cases are prioritized in relation to the other use cases, this means that at a certain

stage, too many use-cases (to fit in the timeframe allocated within the current

iteration) will be chosen. There are several mathematical models that can be used to

resolve such cases [Moisiadis 1998] including, for example, Quality Functional

Deployment (QFD), Analytical Hierarchy Process (AHP), Fuzzy Multi-Criteria

Decision making, etc.

It should be noted that priority should be assigned not just at the use-case level, but

also at the scenario level [Armour 2001] to allow a more fine-grained control over the

development progress.

It is important to remember that use case prioritization can only begin after an ample

number of use cases has been discovers/described to obtain a meaningful

understanding of the system and its risks.

Step 8: Describing the use cases
Up to this step – the use case model is rather thin on details about each use case. The

model has a set of identified use cases (each with a short description and possibly with

pre and post conditions); there are probably some initial diagrams depicting the use

cases relations and hopefully some categories and priorities for the different use cases.

It is in this step, that the use cases at the current priority level (per iteration) should be

elaborated.

It is important to use a standard template for describing the use-cases. Using templates

have several advantages, including making it easier for the team to know what

 - 36 -

information is expected in each use case description; making the writing effort more

precise (providing the purpose of each use-case component is clear and defined) and

allowing easier understanding of the use cases (figuring out the structure of one –

allows the reader to know what to expect from the rest) [Adolph 2003].

There are many use case templates available, however many of them [Armour 2001,

Kruchten 2000, Kulak 2000, Cockburn 2001] share basically the same structure

(though, sometimes using slightly different names). A template should include the

basic fields already mentioned in the "find use case" step (name, scope, actors,

preconditions, success guarantee and trigger) and, in addition, the following fields:

• Main Success scenario – the interactions between the system and the

actors to accomplish the goal of the use case. This is the "sunny day

scenario", where no errors occur and the most common actions are

performed.

• Variations – less common interaction paths (relative to the main success

scenario)

• Exceptions – the interactions with the system when errors occur

• Assumptions – any assumption made (can be complimentary for pre-

conditions as things that the system cannot guarantee)

Additional useful fields include:

• Status [Kulak 2000] – the current state of the use case (first draft, validated,

filled, finished etc.)

• Priority [Armour 2001, Cockburn 2001] – The development priority of the use

case (see the discussion on prioritizing use cases)

• Stakeholders and concerns [Cockburn 2001] - stakeholders (that are not

necessarily actors in the use case) and their interests (that must be protected

within the use-case)

• Issues [Armour 2001] – any open issues in regard to the use case (this should

be empty when the use case is declared finished)

• Non-behavioral requirements [Kruchten 2000,Armour 2001] – any non-

functional requirements that are related to the use-case (performance, security,

safety etc.)

 - 37 -

• Extension Points [Kruchten 2000, Kulak 2000] – steps in the use case where

the extending use cases diverge (more on "extend" relation later).

Lastly, in regard to misuse cases, specific additions can be considered [Sindre 2001]:

• Capture point –options where the misuse case can be prevented or detected.

• Worst case threat (instead of success guarantee) – what happened if the misuse

case successes

• Detection guarantee - describes the outcome when a prevention scenario is

followed

• Prevention guarantee - described the outcome if a detection scenario is

followed

Usually it is best to use a predefined standard template (such as the ones mentioned

above) or, alternatively, to mix-and-match from the various sources to build a

template suitable for the specific project's needs.

Having a template takes care of the formal side of describing the use cases. There are,

however, additional aspects that must be considered. The first of which, is that the use

case text should focus on the use case goal (the one that originated the use case in the

first place).Use cases that try to cover a lot of ground (try to act as a "swiss-army

knife") have a negative effect on managing complexity. Also use cases that get too

large can obscure and bury both the purpose of the use case and the stakeholders

needs [Adolph 2003].

Another important issue is to keep the use cases - technology neutral [Adolph 2003].

Technological details clutter the use cases with information that, more likely than not,

is obscure and cryptic to customers and will thus hinder communication – which is

one of the reasons for writing use cases to begin with. Also since technology is

volatile and may change during the project course, detailing technology increase the

risk of rework to maintain the use-cases up-to-date.

There are many additional points and techniques in regard to writing use-cases that

are not in the scope of this paper (i.e. they pertain to use-case in general). In this

respect, it can be beneficial to read books, such as Alistair Cockburn's "writing

effective use cases" [Cockburn 2001], that deal specifically with the single use case.

 - 38 -

In regard to iterative development, it is important to note that the word iterative here

is used in two levels - not all the use cases will be described in a specific iteration, and

also that not all the use case is necessarily described in any single iteration. The risks

that drive the prioritization of the use-case set also drive the elaboration of the single

use case.

In addition to the textual representation of the use case, it is sometimes beneficial to

diagram the use case course, for example when the sequence of events within the use

case (with all the exceptions and variations) is complex and difficult to follow. It is

recommended, in these cases, to use UML's activity diagrams [Armour 2001] to

visualize the scenarios. Activity diagrams are suitable for the job since they allow

describing parallelism, iterations and conditional logic [Fowler 2000] (the recently

announced UML2.0 also allows describing these behaviors using Sequence diagram).

 - 39 -

Example 11: Using Activity diagrams

The following example shows a use case description followed by its representation as

an activity diagram.

Use Case: Handle Emergency Call

ID: UC24

Scope: The Operator accepts an incoming call, enters the incident information

and dispatch a unit to the location of the incident

Stakeholders and Concerns:

• Victim - wants the police to arrive as soon as possible

• Beat Team – don't want to be dispatched to handle false incidents.

Primary Actor: Emergency Center Operator

Preconditions: Operator logged in.

Success Guarantees:

• The Call has been recorded

• A unit has been dispatch to investigate the incident

• The incident details are saved in the system

Trigger: A Citizen's incoming call has been directed by the Call Center system

to an Operator.

Main Success Scenario:

1. The system begins recording the call.

2. The system traces the caller address.

3. The Operator takes the incidents location

4. The system calculates available police units.

5. The Operator takes the incidents detail

6. The system presents a list of available teams and their distance from the

incidents estimated location.

7. The Operator chooses a unit to handle the incident

8. The system dispatches the incident details to the chosen team.

9. The Operator takes the caller details

10. The system saves the incidents details including call statistics

11. The system ends recording.

Variations:

 - 40 -

1. step 2 - when the caller uses a mobile phone

a. Locate the callers current location

2. step 2 - when the caller is on the black list (known to call for no reason)

a. The Operator is presented with additional questions to ask the

caller

b. The system marks the incident as low-priority on count of

possible false alarm.

3. step 7 - when the incident does not require police intervention.

a. The Operator closes the incident

b. The system saves the termination reasons and continues from

step 10

4. step 7 - if the incident requires a fire truck/ambulance

a. The Operator chooses which authority to notify (fire /

ambulance etc)

b. The system dispatches the incident details to the appropriate

authority's system

Extension Points:

1. step 3 – Instantiate use case - handle an emergency call for a suspected

reported incident

Exceptions:

1. step 2 - when the call cannot be traced

a. The system suggests lowering the priority of the call on the count

of an unknown caller

b. The operator decides what priority to allocate for the incident.

2. step 6 – when there is no available free force

a. The system presents the operator with low-priority incidents

(along with the reason for low-priority

3. step 8 – communication problem with the unit dispatched

a. The system performs step 6 and 7 again.

4. step 8 – communication problem with all the units.

a. The system presents the operator the incidents details to allow

dispatching by radio/mobile phone.

 - 41 -

Non Behavioral Requirements:

• The system should present as few screen as possible to the operator

• Locating a free unit should take less than 30seconds

• Communications to and from the unit should be secure (encrypted) to

prevent eavesdropping by offenders/media

Activity diagram for the "Handle Emergency Call" use case :

 - 42 -

no comm. - one unit

call directed to
operator

begins recording

trace caller

fixed line

enter Incident
Location

calculate
availabel units

enter incident
details

show available
units

dispatch unit

enter caller
details

Choose Unit

save incident
details

end
recording

locate caller

mobile phone

Present more
questionsblack listed

Mark incident as
low priority

close
incident

no need for police

choose
authrity

fire truck/ambulance needed

notify authrity

allocate
priority

suggest
priority

no trace

show units in low-
priority tasks no free units

Show inicident
details

no comm. all units

An additional type of diagram that can be used is sequence diagrams. However, using

Sequence diagrams is usually more beneficial during the use case analysis phase (not

in the scope of this paper) since sequence diagrams can show only a single use case

thread (a scenario instance). During the analysis phase, this can be used to better

understand the components that take part in the use case.

 - 43 -

Step 9: Refactor the model
Refactoring is a change made to the internal structure of a component to make it

easier to understand and cheaper to modify – without changing the observable

behavior of that component [Fowler 1999]. Originally defined for coding (C++), the

principle is applicable to other areas of the software world – use case modeling

included.

Refactoring use cases can mean several things: identifying common behavior;

modeling use case relations, extracting extensions and alternate scenarios to separate

use cases, cleaning up the model etc. The next paragraphs will detail with the most

common of them.

The first type of refactoring methods relate to distributing behavior [Rui 2003]. When

several use cases share a common behavior, or more precisely share a course of action

[Adolph 2003]. It is recommended to extract the common behavior to a new use case

and use the include relation to relate it to the parents. Sometimes the common

behavior can be considered as a parent use case of the two (or more) use cases the

refactoring, in such cases, is similar but instead a parent use case is created and the

scenario is moved to the parent and then related the child use cases [Rui 2003].

The include relation is sometimes used to relate more detailed versions of other use

cases. Some practitioners recommend using trace relation for this cases [Adolph

2003] and keep the include relation only for common sub behavior.

 - 44 -

Example 12: Use case relationships – include vs. trace

The example below demonstrates the difference between the trace and include

relations.

At one level we have the Emergency Center Operator, her job is to handle rmergency

calls:

Handle Emergency Call
(from Cal l Management)

Emergency Center
Operator

(from Actors)

The Handle Emergency Call use case can be decomposed into three sub use cases,

each of these use cases can be considered as a step in the parent use case.

Handle Emergency Call
(from Call Management)

Beat Cop
(from Actors)

Phone Company
(from Systems)

Collect Incident Details
(from Call Management)

<<trace>>

Obtain Caller Details
(from Call Management)

<<trace>>
Emergency Center

Operator
(from Actors)

Dispatch Units
(from Call Management)

<<trace>>

Note that the diagram doesn't say anything about the order of the sub-use cases, also

additional actions can occur when handling an emergency call that are not large

enough to warrant a use case by them selves (these actions are detailed in the text of

Handle Emergency Call).

 - 45 -

The include relation, however is used to relate common sub-behavior of other use

cases:

Find Navigation Route
(from Navigation)

Respond to Incident
(from Incidents Response)

Beat Cop
(from Actors)

Perform Assignment
(from Special Ops support)

<<include>>

<<include>>

Both responding to an incident and performing an assignment (as part of a special

operation) need to use Find Navigation Route – to allow the cop to arrive at the scene

as fast as possible (in the Response to Incident) or on the designated time (on Perform

Assignment).

Note that at the solution level the software for Perform Assignment and Respond to

Incident might turn out to be the same – however from the requirements point of view

each use case serves a different goal.

Another class of refactoring type is moving elements of use cases [Rui 2003]. When

an alternative path affects several steps, it can cause the reader to get confused and

loose track between the primary and the alternative paths [Adolph 2003]. It is

recommended in these cases to move the alternative path to a use case of its own and

relate the two use cases using the extend relation. The extend relation can also be used

when an alternative is too long or complex and thus dominates the use case. Moving

this kind of alternatives to their own use case will prevent them from obscuring the

real use case.

 - 46 -

Example 13: Use case relations – using extend

The following example shows the use of extend relation for child use cases that are a

specialization of the parent use case.

Situation awareness is an intermediate state in the decision making process where the

commander has to have [Endsley 1995]:

• Perception of the current environment and how it came about

• Understanding of possible futures

This is, naturally an essential part of carrying out a special operation – thus the

following use case was identified.

Maintain Situational
Awareness

(from Special Ops)

Operation
Commander
(from Actors)

Achieving situational awareness is not something the system does, it is however,

something the system can assist gaining - by collecting and displaying all the relevant

information regarding the situation (position of forces, estimated position of

offenders, operation goal) , supporting what-if analysis etc.

When the types of special operations that exist are considered, several of those can be

identified– two examples are handling a suicidal bomber and handling a hostage

situation.

While the basic lines of these processes are the same as the general use case defined

earlier – there are special steps that each of these use cases needs, for example:

• Hostage situation – it would be beneficial if the system will display in addition

to the above mentioned data, additional information on the building where the

hostages are held, number of employees, 3D model etc. Also, the operation

will be carried out by the SWAT team and they have different characteristics

compared with other forces.

• Suicidal Bomber – For this use case we need interaction with the bomb squad,

also there are special needs in regards to road blocks as well as crowd control

and evacuation plans (assisting ambulances by clearing traffic etc.).

 - 47 -

 Thus the two use cases (and any other special op. for that matter) will have an extend

relation to the genetic use case of Maintaining Situational Awareness as can be seen

below:

Maintain Situational
Awareness

(from Special Ops)

SWAT Team
(from Actors)

Maintain Situational Awareness -
Hostage Situation

(from Special Ops)

<<extend>>

Operation
Commander
(from Actors)

Bomb Squad
(from Actors)Maintain Situational Awareness -

Suicidal bombing
(from Special Ops)

<<extend>>

Another example of moving use case elements is merging related tiny use case

fragments into a single use case that relate to the same goal [Adolph 2003]. Tiny use

cases usually do not hold user goals and don't help understanding the system.

Merging use cases is also related to the refactoring type of deleting use case elements

[Rui 2003]. It is possible that use cases that were identified in earlier stages, do not

contribute to the overall understanding of the system, or even worse, distract and

cause misunderstandings [Adolph 2003]. Additionally, use case that seems

meaningful at first glance, can be left unreferenced as the analysis progresses. A good

option is to remove these use cases from the model, the same way dead code would be

done with, in software programs.

Additional refactoring type is changing use case elements [Rui 2003] –including

changing use case names to better reflect their meaning, updating actors list, refining

preconditions etc.

A note about use case relations - UML also defined a 3rd use case relation (in addition

to include and extend) [Fowler 2000] called generalize. This relation should be used

when a use case is similar to another use case but does something in a different way

 - 48 -

(different precondition, path etc.) – however, it is not recommended for use as its

meaning is hard to grasp for non-programmers.

Supporting Steps

Step 10: Verify & Validate (V&V) the model
The term Verification ("Are we building the product right?") and Validation ("Are we

building the right product") is used so much to the point of almost being a cliché –

nevertheless – verifying and validating the model is an extremely important step.

The following table, taken from [Anda 2002] ,sums up the different defects that can

occur while modeling use cases.

 UC Element

Problem type

Actors Use cases Flow of
events

Variations Relation
between use
cases

Trigger,
pre- and
post-
conditions

Omissions Human users
or external
entities that
will interact
with the
system are
not
identified

Required
functionality
is not
described in
use cases.
Actors have
goals that do
not have
corresponding
use cases

Input or
output for use
cases is not
described.
Events that
are necessary
for
understanding
the use cases
are missing

Variations
that may
occur when
attempting
to achieve
the goal of a
use case are
not
specified

Common
functionality is not
separated out in
included use cases

Trigger,
pre- or post-
conditions
have been
omitted

Incorrect facts Incorrect
description
of actors or
wrong
connection
between
actor and use
case

Incorrect
description of
a use case

Incorrect
description of
one or several
events

Incorrect
description
of a
variation

Not applicable Incorrect
assumptions
or results
have led to
incorrect
pre- or post-
conditions

Inconsistencies Description
of actor is
inconsistent
with its
behavior in
use cases

Description is
inconsistent
with reaching
the goal of
the use case

Events that
are
inconsistent
with reaching
the goal of
the use case
they are part
of

Variations
which are
inconsistent
with the
goal of the
use case.

Inconsistencies
between diagram
and descriptions,
inconsistent
terminology,
inconsistencies
between use cases,
or different level
of granularity

Pre- or
post-
conditions
are
inconsistent
with goal or
flow of
events

Ambiguities Too broadly
defined
actors or
ambiguous
description

Name of use
case does not
reflect the
goal of the
use case

Ambiguous
description of
events,
perhaps
because of

Ambiguous
description
of what
leads to a
particular

Not applicable Ambiguous
description
of trigger,
pre- or post-
condition

 - 49 -

of actor too little
detail

variation

Extraneous
information

Actors that
do not derive
value
from/provide
value to the
system

Use cases
with
functionality
outside the
scope of the
system or use
cases that
duplicate
functionality

Superfluous
steps or too
much detail
in steps

Variations
that are
outside the
scope of the
system

Not applicable Superfluous
trigger, pre-
or post-
conditions

Consequences Expected
functionality
is
unavailable
for some
users or
interface to
other
systems are
missing

Expected
functionality
is unavailable

Too many or
wrong
constraints on
the design or

the goal is not
reached for
the actor

Wrong
delimitation
of
functionality

Misunderstandings
between different
stake-holders,
inefficient design
and code

Difficult to
test the
system and
bad
navigability
for users
between
different
use cases

There are basically four approaches to verify & validate a model [Anda 2002, Hansen

2002], and a mixing and matching several of them, is usually needed for optimal

results:

• Inspections (verify & validate) – the act where an individual or a team

looks at the use-cases according to pre-defined criteria to verify their

adherence to standards and specifications. Appendix B holds a set of

questions that can serve as a check list for use case model inspections (and

reviews).

• Reviews (verify & validate) – involve multiple readers examining the

different use case artifacts (text, diagrams). Reviews should involve

customer representatives and other stakeholders (as already mentioned in

organize the team step – it is beneficial to hold the reviews in two tiers –

small internal team and a second review with the complete group [Adolph

2003]).

• Walkthroughs (Validate) - a form of review where a use case or a business

scenario (comprised of several use-cases interacting) is actively presented

(usually by the author), and possibly role-played in-order to examine the

flow of events.

 - 50 -

• Prototyping (Validate) – This is based on turning rapid prototype (most

likely screen mockups) to demonstrate to stakeholders (esp. the customer)

the behavior depicted in the use-case. The advantage of this approach is

the visibility of the understanding captured by the use case. The

disadvantage, of course, is the added costs.

No matter which of these approaches is chosen, it is important to remember that

proper verification & validation help reduce the risks of the problems described above

and improve the quality of the project, not to mention the customer satisfaction.

Step 11: Add future requirements
Adding future requirements is not about requirement management (guarding against

feature creep etc.), rather it is about features that are identified during the requirement

analysis, which are not planned to be developed but it is anticipated that they will be

developed as future enhancements. These requirements are also known as "provision

for" requirements. Describing such requirements is beneficial, especially when it is

identified that these future requirements influence the overall architecture of the

solution, so that addressing such requirements now will indeed allow for them to be

integrated more easily.

The UML construct that deals with such changes is called a change case – These are

basically regular use cases with a couple of differences [Ecklund 1996]:

• (by definition) they talk about process/goals that will not be implemented in

the current system

• Each change case holds traceability information to identify use cases that will

be affected by the change

The main benefits of using change cases are:

• The design, and more importantly the architecture, can take into account the

requirements and prepare for the change.

• Impact analysis that is already pre-made when the change materializes. – The

impact can be assesed by dividing the number of use cases affected by the

change to the total number of use cases in the same level as the ones affected

by the change [Ecklund 1996].

 - 51 -

Example 14 Change cases

The following example shows a future enhancement to the Police Force Command &

Control system, along with a couple of other use cases that exist within the current

scope (which can be affected by the change case).

Warehouse management is part of the scope of the current system. Two of the use

cases identified to support this capability include Check Inventory and Order Part.

• Check Inventory – allows the warehouse clerk to check her computer and see

if any needed part in stock. If it is the clerk will have to go and retrieve it –

otherwise she will have to order a new part.

• Order Part – This use case takes care of everything needed to get a new part

for the system – from filling in the purchase order to adding it to the stock

The Retrieve Part use case is a future enhancement – under the current solution it is

the clerk's responsibility to know where she placed the part, and then manually go and

retrieve it and decrease the number in the stock. The future enhancement is to add a

robot that will automatically store and retrieve parts. It is important to detail such

requirements today as adding such a robot, affects the numbering scheme for the

different spare parts. It can also have effect on the technology that will be used to

 - 52 -

catalogue the parts (bar codes vs. plain text labels) etc. Capturing this change case

now, allows planning the system today in a way that will allow the system to grow in

that direction with the minimal changes.

It is impossible (and not practical) to predict all the changes that will occur in a

project, but predicting extensions that are likely to occur is not that complicated

[Armour 2001]. Working on future requirements means that the team is not working

on the requirements for the current project – thus it is important to limit the number of

change cases in the model to a selected few and not derailing the main effort of

developing the use case model for the part of the system that will be developed.

End Game

Step 12: Knowing when to stop
It is very important to devise quitting or stopping criteria for the modeling effort –

especially considering that use cases can always be decomposed to smaller and

smaller fractions and tasks almost ad infinitum. Deciding when to stop is a delicate

balance of the risk of incomplete requirements versus the risk of delaying the project

(or increasing its running costs needlessly).

The following questions can be used to base the stopping criteria [Adolph 2003]

• Have all the actors and goals been covered?

• Has the customer acknowledged that the model is complete and that the use

cases readable and correct?

• Can the designers implement the use case?

• In case of a system of systems: Has the requirements for each sub-system

have been identified within each use case?

Deciding when to stop is not an irreversible decision - should the need arise, the use

cases can be revisited and detailed further. However, re-opening the use case model,

once it has been closed, should probably be approved by a change committee (and/or

other requirement change process) – to make sure there is reason enough for the step.

In addition to the final stopping decision, developing iteratively means that there will

be several other, more minor, decision points (per iteration) - on when are the use

 - 53 -

cases for the iteration complete. The questions that should be answered (to support

these decisions) are simpler:

• Have all the use cases that were prioritized for this iteration been detailed?

• Has the level of detail, agreed upon for the iteration been reached for each of

these use cases (and for any child use case that was spawned by analyzing

them)?

 - 54 -

Summary
Use case modeling is a powerful technique for capturing system requirements,

however, like any other technique; there are several challenges in applying and

scaling a theoretically promising concept to real-life projects. A lot of the books and

resources available are lacking in this sense, as the examples and methodology

depicted in them is only suitable for smaller projects and doesn't scale well.

The methodology described in this paper, is based both on industry best practices and

on hard earned experience gained from participating in several large projects in the

defense, telecom and business intelligence industries.

I have covered some of the major challenges that use case modeling poses to large

projects, and demonstrated and detailed the steps needed in order to mitigate these

risks and thus help achieve a use case model that will be usable by both the project

team, the customer and other stakeholders.

The methodology, as it is described in this paper, only deals with the development of

the use case model, there are several other aspects of the development life-cycle that

can have a significant effect on the success of the modeling effort.

The most important areas that can make or break the use case modeling efforts are:

• Requirements management - managing the changes in requirements, guarding

against unmanaged feature creep, traceability to the RFP (if it exists) etc.

• Configuration management - related to the former issue, in regards to

versioning of the use cases. This is also important in regulating and

coordinating the team work of developing the model.

• Project Management – Setting the priorities right, dividing the iterations

correctly, managing the availability of suitable personnel for the job etc.

• Maintaining the teams focus and drive – Related to project management, this

means managing the use case development team, not letting them get lost in

the details – it is also related to the "knowing when to stop" step described

earlier.

Lastly, In large organizations the methodology will need tailoring both to match the

organization's culture and the specific project's needs. I do believe, however, that

applying the methodology (or the key concepts of the methodology) described in this

paper, can help increase the chances of a successful modeling effort for large and

small projects alike.

 - 55 -

Appendix A: Police Force Command & Control (C&C)
As mentioned in the preface, the examples used in the paper to demonstrate key issues

are in fact small fractions of a large problem. The following section describes the

overall framework or the problem statement within which all the examples exist.

The project at hand is a comprehensive Force Command & Control system for police

headquarters.

Background:

There are six operational strategies (five are core and one auxiliary) that police forces

use for achieving the policing goals [Scott 2000]:

• Preventive Patrol - the idea is to have presence - i.e. police officers in uniform

patrolling the streets. The logic behind this is twofold. First the present of

police officers is expected to deter citizens from committing offenses and

enhance the sense of security for the law abiding citizens. Second, the

presence of police officers is expected to increase the probability that they will

interrupt offenses in progress.

• Routine Incident Response – the regular day-to-day work, of responding to

"calls for service", include for example, restoring order, document complaints,

etc.

• Emergency Response - This strategy objective it to save lives, minimize

injuries, restore basic level of order etc. It encompasses crimes in progress,

officers' requests for immediate assistance, traffic accidents with injuries,

natural disasters etc.

• Criminal Investigation - once the police determines that a crime has been

committed (usually triggered by Routine or Emergency Response) – this

strategy provides the framework for investigations . The unit of work is the

case and processes to collect enough evidence to solve the "cases" (usually by

apprehending a suspects and bringing them to justice).

• Problem Solving – is a methodology for proactively dealing with the policing

problems. It involves a process for problem identification, analysis, response

and evaluation.

• Support services – This includes activities such as teaching crime prevention

techniques, operating youth activity programs, providing copies of police work

 - 56 -

and other general services that are not related to the other 5 operational

strategies.

Problem Statement:
The solution should provide services and support the more proactive aspect of the

policing work- namely: Preventive Patrols, Emergency Response and Problem

Solving.

The solution has to cover three main areas:

A. on-going operations

a. The system has to support an "Emergency Communications Center",

manage a dispatch office of several operators, track forces allocation to

incidents/calls, and allow allocation of forces (i.e. dispatch units) to

new incidents etc. The system should also collect "classic" call center

statistics such as number of calls, response time of operators,

complaints etc.

b. Allow planning and carrying out of special operations (e.g. a large drug

busts, Terrorist hunts etc.) – The system should support force

allocation to missions, planning of routes etc., continuous near real-

time tracking of participating forces, progress and completion reports.

c. The system should supply a "situation awareness" picture so that the

police HQ will be able to monitor the overall situation of all police cars

and other police forces in each of the districts. The same capability

should be available at the district level.

d. The system should support incident pattern analysis i.e. help police

officers identify and analyze problems, as well as assess the success of

responses. Officers should be provided with crime and incident data

relating to their beats on a monthly basis. The system should also

interact with external systems (such as an Area’s Intelligence Unit)

import and export data. Incidents should also be mapped to street /

neighborhood level to enable spatial analysis of incident patterns.

B. Aids for police personnel on the field – It is required that the police cars /

policemen will be equipped with wireless terminal (e.g. PDA) that will have

 - 57 -

on-line connection to the HQ, District and Emergency Communications

centers. These terminals should support the following functionality :

a. Navigation maps (GPS based) – including current-location reporting

to HQ/district.

b. List of duties (running list of in progress (emergency) calls/operations

allocated to the force)

c. Link to the police offenders and criminals records (a legacy system

already in-service) to allow a policeman to check data on suspects etc.

d. Link to the car and drivers registry (an external database run by the

ministry of transport) – to allow policemen to key SSN (Social

Security Number) or VIN (Vehicle Identification Number) and retrieve

license and insurance status for both the driver and car.

e. Ticketing and reporting system to allow policemen to issue tickets and

file event reports.

C. Logistics Management – the system should manage

a. Sensor management – collecting data on-line from sensors (radars,

camera etc.) regarding their operational status and mange the

technicians that service the sensors etc.

b. Police Cars management – track usage of police cars and mange the

servicing of cars, trucks etc. (when to send a car to the garage etc.)

c. Personnel management – mange which policemen are assigned to

which car/unit , which is on leave etc.

 In addition to the above mentioned "business" aspects of the system, it should also

support system administration functionality (adding/ removing users, issue passwords,

network monitoring and management). The system should also have a rigorous and

robust security system (to prevent unauthorized retrieval / alteration of data).

 - 58 -

Appendix B: Use Case inspection questions
This section lists several questions, from various sources [Carr 2000, Anda 2002,

Armour 2001] as well as personal experience, that can serve as a check list for use

case model verification and validation.

Actors
• Are there any actors that are not defined in the use case model, that is, will

the system communicate with any other systems, hardware or human users

that have not been described?

• Are there any superfluous actors in the use case model, that is, human

users or other systems that will not provide input to or receive output from

the system?

• Are all the actors abstractions of specific roles?

• Are all the actors clearly described, and do you agree with the

descriptions?

• Is it clear which actors are involved in which use cases, and can this be

clearly seen from the use case diagram and textual descriptions?

• Are all the actors connected to the right use cases?

The use cases

• Does the use case make sense?

• For each iteration: Are all the use cases described at the same level of

detail?

• Is there any missing functionality that is, do the actors have goals that must

be fulfilled, but that have not been described in use cases?

• Are there any superfluous use cases, that is, use cases that are outside the

boundary of the system, do not lead to the fulfillment of a goal for an actor

or duplicate functionality described in other use cases?

• Do all the use cases lead to the fulfillment of exactly one goal for an actor,

and is it clear from the use case name what is the goal?

• Are the descriptions of how the actor interacts with the system in the use

cases consistent with the description of the actor?

• Are the actors external to the use case boundary?

 - 59 -

• Is it clear from the descriptions of the use cases how the goals are reached

and do you agree with the descriptions?

• When there is an RFP document: Is there bi-directional tractability

between the use cases and the originating requirements?

• Are the use cases testable?

• Are all the use cases described according to the predefined template?

• Do all the use case names follow the naming convention (most likely verb-

noun)?

The scenarios

• Is the start of each use case unambiguous?

• Does an action by an actor start each use case?

• Is expected input and output correctly defined in each use case; is the

output from the system defined for every input from the actor, both for

normal flow of events and variations?

• Does each event in the normal flow of events relate to the goal of its use

case?

• Is the flow of events described with concrete terms and measurable

concepts and is it described at a suitable level of detail without details that

restrict the user interface or the design of the system?

• Are there any variants to the normal flow of events that have not been

identified in the use cases, that is, are there any missing variations?

(“happy days scenarios”, exceptions, variation, “soup-opera scenarios”)

• Are the triggers, starting conditions, for each use case described at the

correct level of detail?

• Are the preconditions and guarantees correctly described for all use cases,

that is, are they described with the correct level of detail, do the

preconditions and guarantees match for each of the use cases and are they

testable?

• Does the behavior of a use case conflict with the behavior of other use

cases?

• Is the number of steps in the complex scenarios excessive (12 to 15 is

getting borderline)?

 - 60 -

The use case diagrams

• Does each use case have a representation in at least one diagram?

• Do the use case diagram and the textual descriptions match?

• Are all use case diagrams drawn using the same (preferably the UML's)

diagramming notation?

• Is each actor represented in the use case diagrams in which it is involved?

• Should similar use case diagrams be combined (using extend and uses

relations)?

• Has the include-relation been used to factor out common behavior?

• Are the diagrams readable (not too many relations, levels etc. in any single

diagram)?

The use case organization and prioritization
• Are all the use cases organized in an appropriate manner (e.g. by

functional area, by dependency, by actor etc)?

• Are all the use cases within a package consistent with the theme of the

package?

• Is the priority mechanism documented?

• Are the use cases prioritized correctly?

 - 61 -

Bibliography

[Adolph 2003] W. S. Adolph and P. Bramble, Patterns for effective use cases.

Boston ; London: Addison-Wesley, 2003.
[Alexander 2002] I. Alexander, "Initial Industrial Experience of Misuse Cases in

Trade-off Analysis", Proceedings of IEEE Joint International
Requirements Engineering Conference, 9-13 September 2002,
Essen, pp 61-68

[Anda 2002] B. Anda, , D. I. K. Sjøberg "Towards an inspection technique
for use case models", Proceedings of the 14th international
conference on Software engineering and knowledge
engineering , 2002. pp. 127-134.

[Armour 2001] F. Armour and G. Miller, Advanced use case modeling :
software systems. Boston ; London: Addison-Wesley, 2001.

[Bittner 2003] K. Bittner and I. Spence "Managing Iterative Software
Development with Use Cases," The Rational Edge, 2003.

[Booch 1999] G. Booch, I. Jacobson, and J. Rumbaugh, Unified Modeling
Language Users Guide: Addison Wesley Longman, Inc, 1999.

[Brooks 1995] F. P. Brooks, The mythical man-month : essays on software
engineering, Anniversary ed. Reading, Mass.: Addison-Wesley
Pub. Co., 1995.

[Carr 2000] J. T, Carr III, O. Balci, "Verification and Validation of Object-
Oriented Artifacts Throughout the Simulation Model
Development Life Cycle ", Proceedings of the 2000 Winter
Simulation Conference, J. A. Joines, R. R. Barton, K. Kang,
and P. A. Fishwick, eds. , 2000.

[Chicago 2003] Chicago police dept. web
site,http://egov.cityofchicago.org/city/webportal/portalEntityHo
meAction.do?entityName=Police&entityNameEnumValue=33,
2003.

[Cockburn 2001] A. Cockburn, Writing effective use cases. Boston ; London:
Addison-Wesley, 2001.

[Crain 2002] A. Crain, "Dear Dr. Use Case: Is the Clock an Actor," The
Rational Edge, 2002.

[Ecklund 1996] E. F. Ecklund, Jr., L.M.L. Delcambre, M. J. Freiling, "Change
cases: use cases that identify future requirements", in:
Proceedings OOPSLA'96, 1996, pp. 342-358.

[Endsley 1995] M. Endsley, “Towards a Theory of Situation Awareness in
Dynamic Systems,”," Human Factors,, 37:1, 1995, pp. 32-64.

[Firesmith 1996] D. G. Firesmith, "“Use Cases: The Pros and Cons,”," in
Wisdom of the Gurus: A Vision for Object Technology,, Charles
F. Bowman, Ed. New York: SIGS Books Inc., 1996, pp. 171-
180.

[Fowler 1999] M. Fowler, Refactoring: Improving the Design of Existing
Code, ; Harlow, England: Addison-Wesley, 1999.

[Fowler 2000] M. Fowler and K. Scott, UML distilled : a brief guide to the
standard object modeling language, 2nd ed. Reading, Mass. ;
Harlow, England: Addison-Wesley, 2000.

 - 62 -

[Gabb 2001] A. Gabb et al "Requirements Categorization",
http://www.incose.org/rwg/01_req_categories/categories.html,
INCOSE requirements working group , 2001.

[Gottesdiener 2003] E. Gottesdiener "Use Cases: Best Practices",
http://www.rational.com/media/whitepapers/usecase_bp.pdf,
Rational Software , 2003.

[Ham 1998] G. A. Ham, "Four Roads to Use Case Discovery," CrossTalk,
vol. 11, 1998.

[Hansen 2002] T Hansen, G. Miller "A Framework for Prioritizing Use Cases
Definition and Verification of Requirements Through Use Case
Analysis and Early Prototyping",
http://www.mindspring.com/~ggmiller/~ggmiller/hansen.pdf ,
2002.

[IEEE 1998] IEEE, "IEEE Recommended Practice for Software
Requirements Specifications," IEEE Computer Society, STD-
830-1998, 1998.

[Jacobson 1992] I. Jacobson, Object-oriented software engineering : a use case
driven approach. New York; Wokingham, Eng.;Reading,
Mass.: ACM Press ;Addison-Wesley Pub., 1992.

[Jacobson 2003] I. Jacobson, "Use Cases -- Yesterday, Today, and Tomorrow,"
The Rational Edge, 2003.

[Kruchten 2000] P. Kruchten: The Rational Unified Process – an Introduction,
Addison-Wesley, 2000.

[Kulak 2000] D. Kulak and E. Guiney, Use Cases: Requirements in Context,
ACM Press, 2000.

[Leigh 1996] A. Leigh, T. Read, N. Tilley, "Problem Oriented Policing: Brit
Pop" Police Research Series, Paper 75, Home Office, London,
1996.

[Lilly 2000] S. Lilly, "How to Avoid Use-Case Pitfalls," Software
Development Magazine, 2000.

[Moisiadis 1998] F. Moisiadis "A Framework for Prioritizing Use Cases",
http://www.jrcase.mq.edu.au/caise98.html,JRCASE , 1998.

[O'Connor 2003] T. O'Connor, "Police Structure and Organization",
http://faculty.ncwc.edu/toconnor/polstruct.htm, 2003.

[Probasco 2000] L. Probasco, "The Ten Essentials of RUP," The Rational Edge,
2000.

[Rosenberg 2001] D. Rosenberg and K. Scott, "Driving Design: The Problem
Domain," Software Development Magazine, 2001.

[Rui 2003] K. Rui and G. Butler, "Refactoring use case models: the
metamodel”," proceeding of the twenty-sixth Australasian
computer science conference on Conference in research and
practice in information technology - Vol 16., Adelaide,
Australia, 2003, pp. 301-308.

[Scott 2000] M.S. Scott, Problem-Oriented Policing : Reflections on the first
20 years , , U.S. Department of Justice, Office of Community
Oriented Policing, Washington, 2000

[Sindre 2001] G. Sindre, A. L. Opdahl, "Template for Misuse Case
Description", Seventh International Workshop on
Requirements Engineering: Foundation for Software Quality ,
4-5 June 2001.

