

SOA Patterns Arnon Rotem-Gal-Oz 1

1

SOA Patterns
Arnon Rotem-Gal-Oz

10.1 The Knot

Everything starts oh so well. Embarking on a new SOA initiative the whole team feels as if it is pure

green field development. We venture on - The first service is designed. Hey look it got all these bells and

whistles; we are even using XML so it must be good. Then we design the second service, it turns out the

first service has to talk to the second – and vice versa. Then comes a third, it has to talk to the other two.

The forth service only talks to a couple of the previous ones. The twelfth talks to nine of the others and

the fourteenth has to contact them all – yep our services are tangling up together into an inflexible, rigid

knot

The above scenario might sound to you like a wacky and improbable scenario - why would anyone in

the right mind do something like that? Let’s take another look, with a concrete example this time and see

how the road to hell is paved with good intentions. In Figure 10.1 below we see a vanilla ordering

scenario. An ordering service sends the order details to a stock service, where the items are identified in

the stock, marked for delivery and then sent to a delivery service which talks to external shipping

companies such as DHL, FedEx etc.

Figure 10.1 a vanilla ordering scenario. An ordering service sends the order to a stock service, which provisions the goods

to a delivery service which is responsible to send the products to the customer

If we think about it more we’ll see that when an item is missing from the stock we probably have to

talk to external suppliers, order the missing items and wait for their arrival- so the whole process is not

immediate. Furthermore since the process takes time, it seems viable to cancel the process if an order is

cancelled. It seems we have two options (see Figure 10.2) either the ordering service will ask the two

other services to cancel processing related to the order or the two services call the ordering service before

they decide what to do next. Naturally the system wouldn’t stop here, we would want to introduce more

services and more connections e.g. an Accounts Payable service that interacts with the external suppliers,

the stock service and the delivery service(since we also need to pay shipping companies) etc.

http://www.soapatternsbook.com/

SOA Patterns Arnon Rotem-Gal-Oz 2

2

Figure 10.2 a little more realistic version of the Ordering scenario from figure 10.1. Now we also need to handle missing

items in the stock, cancelled orders and paying external suppliers. In this scenario the services get to be more coupled.

For instance the Ordering service is now aware of the delivery service and not just the stock service.

With each new service we draw more lines going from service to service, and with each new service

we update the services’ business logic with the new business rules as well as knowledge of the other

services’ contracts.

10.1.1 Consequences

Well, so we get more lines going from service to service that normal isn’t it? After all if the services

won’t talk to each other they won’t be very useful? Isn’t that the whole point of SOA?

Well, yes – and no. Yes it is normal for services to connect to each other. After all, creating a system

in an SOA is connecting services together. As for the “no” part, the problem lies with the way we

develop these integrations if you are not careful it is easy to get all the integration lines in a big, ugly

mess – a knot

A knot is an Anti-pattern where the services are tightly coupled by hardcoded point-to-

point integration and context specific interfaces

For instance, what happens when we want to reuse the ordering service mentioned above? No

problem, we just call it from the new context. Alas, the knot prevents us from reusing it without hauling

in the rest of the baggage - all the other services we defined above (the stock, delivery etc.) if the new

context is not identical in it ordering processes and matches what we already have we can’t use it. Or we

can’t use it without adding one-off interfaces where we add specific messages for the new context and all

sort of “if” statements to distinguish between the old and the new behavior. Another option is to make this

SOA Patterns Arnon Rotem-Gal-Oz 3

3

distinction in the original messages, which either not possible or forces us to make sure the other services

are still functioning. In any event it is a big mess.

Let’s recap. We moved to SOA to get flexibility, increase reuse/use within our systems, prevent

spaghetti point to point integration – what we see here is not flexible, hard to maintain and basically it

seems like we are back in square one and we invested gazillions of dollars to get there.

10.1.2 Causes

How did that happen? How can a wonderful, open standards, distributed, flexible SOA deteriorate to

an unmanageable knot?

It is tempting to dismiss the knot as the result of lack of adequate planning. If we only planned

everything in advance we wouldn’t be in this mess now. Well, besides the point that trying to plan

everything ahead of time is an anti-pattern in itself (an organizational anti-pattern – which isn’t in the

scope of this book). There’s still a good chance you’d get to a Knot anyway since the problems are

inherent in the way business work.

If we take a look back at the Integration Spaghetti scenario discussed in chapter 1 (depicted as figure

10.3 below), we can see that the phenomena was there as well, when we our business processes evolve we

find we need to interact with information from other parts of the system. The flow of a business process

expands to supply that needed information or service and thus the Knot grows.

SOA Patterns Arnon Rotem-Gal-Oz 4

4

Figure 10.3 the Knot anti-pattern is similar in both effect and origin to the spaghetti integration in non-SOA environments

From the technical perspective, we have two forces working here. One is the granularity of the

services. On the one hand, Services are sized so that a business process requires several of them to work

together. On the other hand they aren’t small enough so that they would be an end-node in the process

(i.e. only other services would call the service and it will just return a result). Note that this isn’t a bad

thing in itself, after all if each process was implemented by a single service we’d have silos not unlike the

ones we try to escape by using SOA and if we set the services too small we’d fall into another trap (see

the Nanoservices anti-pattern later in this chapter). The bottom line is that while the granularity is a force

that drives us toward the Knot, there’s not a lot we can do about it without getting ourselves into worse

problems.

The second, stronger, force that pushes a system into a Knot is the business process itself. Since, as

we mentioned above, the process flows through the services, the services needs to be aware of the flow

and then call other services to complete the flow. In order for a service to call another service it has to

know about its contract and know about its endpoint. When another business flow goes through that

service we not only add the new contracts and endpoints but also the contextual knowledge of which

other services to call depending on the process. And that’s my friends, is exactly the thing that gets us into

trouble – the services start to tie themselves to each other more and more, as we implement more business

process and more flows.

Hey, you say, but SOA should have solved all that, surely there is something we can do about it – or

is there?

10.1.3 Refactoring

The previous section explains that most of the problem is caused by having the services’ code

determine where to go next and what to do with the results of the services’ processing. If there was only a

way to somehow pry these decisions away from the services’ greedy hands… As you’d probably guessed

there is such away, in fact there are several such ways and this book lists three of them: The Workflodize

pattern (Chapter 2), Orchestrated Choreography (Chapter 7) and Inversion of Communications (Chapter

5). Let’s take a brief look at each of these patterns and see how they help.

The workflodize pattern suggests adding a workflow engine inside the service to handle both Sagas

(i.e. long running operations, see chapter 5) and added flexibility. The “added flexibility” is the card we

want to play here. When we express the connections as steps in the workflow they are not part of our

services’ business logic. They are also easier to change in a configuration-like manner both of these

points are big plusses.

Still, a better way to solve the service to service integration problem is to use an external

orchestration engine. The idea of using the Orchestrated Choreography pattern is to enable Business

Process Management- or a way for the organization to control and verify it processes are carried out as

intended (you need an orchestration engine for that but it helps…). In the context of solving or avoiding

the Knot anti-pattern, Orchestrated Choreography is better than Workflodize since it centralizes and

externalizes all the interactions between services and thus effectively removing all the problematic code

SOA Patterns Arnon Rotem-Gal-Oz 5

5

from the services themselves. Note that there’s a fine line between externalizing flow and externalizing

the logic itself (see discussion in Orchestrated Choreography pattern, in chapter 7).

The third pattern we can use to refactor the Knot is Inversion of Communications. Inversion of

Communications means modeling the interactions between services as events rather than calls. Inversion

of communications is, in my opinion, the strongest countermeasure to the knot. The two patterns

mentioned above bring a lot of flexibility in routing the messages between the services. The inversion of

communications pattern also helps the message designers remove specific contexts from the messages

since when the service’s status is raised as an event it isn’t addressed to any other service in particular.

Note that using inversion of communications doesn’t negate using either of the two other patterns

mentioned above since that once the event is raised we still need to route it to other services and using a

workflow engine is a good option for that. Another implementation option is to use an infrastructure that

supports publish/subscribe (see the pattern’s description in chapter 5 for more details.)

Going back to the ordering scenario we mentioned above. As I mentioned, the services grow with

needless knowledge of specific business process. So for instance, the ordering service had to know both

about the stock service and the delivery one. Refactored with the Inversion of Communications pattern,

the same Ordering service doesn’t have to know about any of the other services. In Figure 10.4 we can

now see that the Ordering service sends two business events (new order, cancelled order) and the routing

of these messages is no longer the responsibility of the service

Figure 10.4 the Ordering service using the Inversion of Communications pattern. Now the service doesn’t know/depend on

other services directly. It is only aware of the business events of new order and cancelled order which are relevant to the

business function that the service handled

Refactorings aside, one question we still need to think about is whether there are any circumstances

where having a Knot is acceptable.

10.1.4 Known Exceptions

In a sense the Knot is a distributed version of an anti-pattern described by Brian Foote and Joseph

Yoder as “Big Ball of Mud” – spaghetti code where different types of the system tied to each other in

unmanageable ways. The reason for mentioning the connection is that the reason that “Big Ball of Mud”

might be considered a pattern rather than an anti-pattern also apply here:

“[when] you need to deliver quality software on time on budget… focus first of feature and

functionality, then focus on architecture and performance”

SOA Patterns Arnon Rotem-Gal-Oz 6

6

Starting out on a large project, such as moving an enterprise to SOA, is difficult enough as it is. You

can’t figure everything in advance; you need to deliver something – so as Nike says “just do it”. Get

something done. You do need to be prepared to let go and redesign further down the road. In the current

system I’m working on – a visual recognition/search engine for mobile, we went with a “knot” approach

for the first release. The simplicity of the implementation, i.e. less investment in infrastructure, ad hoc

integration etc. enabled us to deliver a first working version in less than 6 months. These 6 months also

helped us understand the domain we are operating in much better and more importantly get to market

with the feature the business needed in the schedule the business wanted. We spent the next 6 month

rewriting the system in a proper way, including applying the Inversion of Communications pattern

mentioned above.

To sum this up, coding the integration code into services is likely to end as a Knot. It is acceptable to

go down this path for a prototype or first version i.e. to show quick results. However you do need to

plan/make the time to refactor the solution so you will not get stuck down the road.

	SOA Patterns
	Arnon Rotem-Gal-Oz

	Figure 10.1 a vanilla ordering scenario. An ordering service sends the order to a stock service, which provisions the goods to a delivery service which is responsible to send the products to the customer
	Figure 10.2 a little more realistic version of the Ordering scenario from figure 10.1. Now we also need to handle missing items in the stock, cancelled orders and paying external suppliers. In this scenario the services get to be more coupled. For ins...
	Figure 10.3 the Knot anti-pattern is similar in both effect and origin to the spaghetti integration in non-SOA environments
	Figure 10.4 the Ordering service using the Inversion of Communications pattern. Now the service doesn’t know/depend on other services directly. It is only aware of the business events of new order and cancelled order which are relevant to the business...

